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The effect of surface contamination on 
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We consider the effect of insoluble surfactants on the steady thermocapillary flow 
in a differentially heated slot treated previously by Sen & Davis (1982). The equation 
of state for interfacial tension is taken to be linear in both temperature and surfactant 
concentration. We treat the problem in the limit of shallow slots and low thermal 
Marangoni numbers so that the effect of surfactants is described by only two para- 
meters: a surface PBclet number Pe and an elasticity parameter denoted by E,  the 
ratio of the compositional elasticity to the tension difference due to the imposed tem- 
perature difference. Using lubrication theory and matched asymptotic expansions, 
we reduce the problem to a single nonlinear integral-algebraic equation (for the 
outer core variables), which we solve both numerically and in various asymptotic 
limits by perturbation theory. It is shown that the general effect of surfactants is 
to retard the strength of the motion, but that this retardation is not necessarily 
uniform in space. Surprisingly, there are only extreme cases in which condensed 
surfactant layers will form, these being E < 1 ,  Pe 9 1 .  Sharp gradients in surfactant 
concentrations will not form in the general case of E = O(1).  This behaviour is due 
to the strong coupling between the flow and the interfacial stress, and is contrasted 
with certain well-known forced-convection problems. 

1. Introduction 
Thermocapillary convection refers to flows that are driven by the coupling between 

temperature gradients which may exist on the interface between two fluids and the 
tangential stress which results as a consequence of the dependence of the surface or 
interfacial tension on temperature. This general class of flows has been the subject 
of review articles by Levich & Krylov (1969), Kenning (1968) and Ostrach (1977, 
1982). There has been renewed interest in both analytical and experimental studies 
of such flows in recent years due in part to the effects such flows may have on systems 
of macroscopic dimension in the low-gravity environment of space (Ostrach 1982). 
Nonetheless, our understanding of such flows is still a t  a primitive stage of 
development, due in part to the fact that  an interface is present and the problems 
thus involve the location of an unknown boundary. Most of the existing analyses are 
for rectilinear or nearly rectilinear flows (see e.g. Yih 1968, 1969; Adler & Sowerby 
1970). Recently, Sen & Davis (1982) have analysed steady thermocapillary convection 
in a bounded two-dimensional slot. Their work forms the basis of the problem we 
consider, so it is discussed in detail in $ 3  below. Chang & Wilcox (1976) (with 
corrections by Clark & Wilcox 1980) have numerically solved for thermocapillary 
convection in a cylindrical geometry subject to thermal boundary conditions of 
interest in crystal-growth applications. 

t Present address: DFVLR, Gottingen, West Germany. 
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I 
Bulk concentration 

FIGURE 1.  Idealized relationship between cr and bulk concentration. 

We shall be interested in this paper in the effect of surfactants on the nature and 
strength of such thermocapillary flows. It is well known that surfactants can exert 
a profound influence on interfacial flows. This influence is due to both the dependence 
of interfacial tension on surface concentration and the surface phase behaviour. 
Interfacial tension generally decreases with increasing surface concentration. Such 
effects give rise to forces within the interface which have been termed ‘compositional 
elasticity ’, as such forces are proportional to surface displacement. These effects are 
responsible for the stabilization of convective instabilities (Berg & Acrivos 1965), the 
apparent stabilization of viscous film flows (Whitaker 1964), and the relative 
stabilization of foams and thin films during coalescence processes. 

In addition, one or more phase changes may occur as the surface species become 
more concentrated. Surface monolayers may also reach saturation above a certain 
concentration, and any attempt to increase the local concentration results in 
monolayer collapse, solubilization of the surfactant into the bulk, or both. Figure 1 
shows an idealization of the behaviour of interfacial tension with bulk concentration 
for the simple case of adsorption followed by the formation of a single condensed phase 
at  saturation. Such models have been used with good success to study the effect of 
surfactants on the rise velocity of small bubbles (Horton, Fritsch & Kintner 1965; 
Davis & Acrivos 1966), and monolayer formation at a stagnation point (Merson & 
Quinn 1964). Figure 2 shows a schematic of the behaviour in these latter problems, 
in which a unidirectional convective flow toward a stagnation point causes the 
buildup of a condensed film whose dynamic effect is to render that portion of the 
interface immobile. 

A key feature of situations such as those sketched in figure 2 is that the velocity 
is externally imposed, and as such these may be considered as forced-convection 
problems as far as the surface mass balance is concerned. It will develop below that 
there is a fundamental difference in behaviour between such problems and those under 
consideration in this paper, in which the flow is driven solely by stresses due to 
gradients of either temperature or concentration within the interface. This latter class 
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FIGURE 2. Formation of condensed films at stagnation points: (a)  droplet flow; ( b )  channel flow. 

FIGURE 3. Schematic of thermocapillary flow with an adsorbed surfactant. 

of problems may be considered to be akin to natural convection problems. This 
difference is discussed in detail in $6. 

Consider now the situation sketched in figure 3. A fluid is contained between two 
horizontal walls held a t  different temperatures. A temperature gradient will exist 
along the free surface, causing thermocapillary flow to occur. If the surface has an 
insoluble surfactant adsorbed on it,  the surfactant will be convected by the flow and 
in general there will occur a gradient in surface concentration, with possible surface 
phase change and/or resolubilization of surface species. This in turn causes a gradient 
in interfacial tension, which will couple the surfactant concentration to the flow field, 
causing a moderation of the flow driven by thermocapillarity alone. I n  this paper we 
will seek to analytically describe the effect of such insoluble surfactants on the 
thermocapillary flow treated by Sen & Davis (1982, hereinafter referred to as SD). 

2. Formulation 
Consider a two-dimensional channel of height h and length 1 as sketched in figure 3, 
heated differentially from the side, with a free surface on which an insoluble surface 
species is adsorbed. The coordinate system is as shown, and the horizontal and 
vertical velocity components are u and v respectively. We consider the vertical 
boundaries to be isothermal and impenetrable and the lower horizontal boundary to 
be insulated and similarly impenetrable. The interfacial tension of the liquid is taken 

15-2 
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to depend upon both temperature and local surface composition of the surfactant: 
thus 

= aO-yT(T-T,)-y,(c’-c,)), ( 2 . 1 )  

where vo is the mean tension a t  temperature T, and surface concentration co (which 
is in general lower than that for co = 0) .  The reference temperature T, is taken as the 
average of the vertical wall temperatures, and co is the average surface concentration. 
yT and yc are the usual (constant) rates of change of v with respect to temperature 
and concentration. Owing to variations in T and c‘, there will be a tangential stress 
in the interface which is balanced by a viscous stress due to motion in the bulk. Our 
problem is to  solve for this motion as a function of the parameters of the problem. 
In writing such an equation of state for the surface, we are neglecting any surface 
phase transitions, and are thus limiting our analysis to ‘gaseous’ surface species (see 
Gaines 1966). 

I n  order to render the equations dimensionless, i t  is necessary to choose characteristic 
scales. We follow Ostrach (1977) and SD in choosing the following : 

pu*l 
d2 ’ 

p* N - T* - TH-T, AT, C* - c,. 
The scale u* arises from the primary balance between the thermocapillary and viscous 
stresses; that for v* is consistent with the continuity equation. The viscous scale for 
P* anticipates a lubrication-theory analysis. The location of the free surface y = h(x) 
is scaled with the depth d .  

The equations governing the velocity, temperature and pressure fields in the bulk 
are the steady Navier-Stokes equations and the energy equation, which read (SD) 

ux+vy = 0, 

RA(uux + VU,) = - P, + uYy+ A2uXx, 

RA3(uvx + VV,) = - Py + A2(vYy + A2vzx), 

MA(uTX + vT,) = Tyy + A2Txx. 

( 2 . 2 ~ )  

( 2 . 2 b )  

( 2 . 2 c )  

( 2 . 2 d )  

The parameters appearing in these equations are 

aspect ratio), 
d 
1 

A = -  ( 

Y T  ATd (Reynolds number), 
u*d R=-=A- 

V LLV 

u*d Ay,ATd 
M = - =  (Marangoni number). 

a Pa 

The boundary conditions on the solid walls may be written directly: 

u = v = T y = 0  ( y = O ) ,  ( 2 . 3 ~ )  

u = v =  ( T T i )  = 0 (X = +$). ( 2 . 3 b )  

I n  addition to the bulk equations and the above boundary conditions, we also have 
conditions which must hold on the free boundary y -- h(x). These arise from the usual 
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boundary conditions on the flow variables and from a surface-continuity equation 
for the surfactant. Thus 

v = uh,, ( 2 . 3 ~ )  

2A2 A2 hzx - P+ - [vy - h, uY + A2h,( - V, + h, us)] = -- ( 1 - CT- EC(c - 1 )), (2.3 d )  
N2 C N 3  

Ty-A2h T 
N 

Z + L ( T + x )  = 0, 

d2C A2 dc hX hXX d A2uch, h,, 
__- dx2 dx N2 - P e ~ 2 [ z ( u c ) +  N2 1, 

where for convenience we have written 

N2 = 1 + A2h;. (2.3h) 

Note that we have assumed that, in addition to surface convection, surfactant can 
diffuse in the surface. We shall be interested in the consequences of this model. These 
equations are the kinematic condition, the normal and tangential stress balances, the 
thermal condition and the species continuity equation, all of which hold on the free 
boundary y = h(x). 

Note that in (2.3 f )  we have modelled the thermal conditions of the top surface in 
terms of a constant dimensionless heat-transfer coefficient (a Biot number) L. As i t  
will develop, our solutions will be conduction-dominated, and therefore the precise 
form of this condition will be immaterial to  the main conclusions of the analysis. 
Equation (2.39) must be solved subject to  the conditions 

dc - _  - 0 
dx (x = *$). (2.3i) 

Equation (2.3d) is to be solved subject to  conditions which hold a t  the contact line. 
The behaviour of the contact line must therefore be modelled. Here we take a fixed 
contact line, which implies 

h =  1 ( x =  *+). (2.3j) 

Such a condition may be approximated experimentally by the use of a knife-edge 
in the plane of the undistorted interface. Other boundary conditions may be treated 
in a similar fashion, as discussed by SD. The major conclusions of this work are 
independent of the exact form of the boundary condition on the contact line. The 
additional parameters occurring in these equations are 

C=-  Y T  (capillary number), 
VO 

hd 
L = (Biot number), 

E=- '' yc (elasticity number), 
ATyT 

u*l y T  ATd 
(surface PBclet number). pe=3=- D 

The derivation of the surface balance, (2.39), is given in Appendix A. 
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A few comments regarding the surface equations are in order. The thermal 
condition is that of SD. Note that we have defined the capillary number in a slightly 
different manner than SD. As defined here, C N A a / a , ,  which is in general a small 
quantity. Thus we will treat the limit C 4 1. For small capillary number, the 
deflection of the interface due to normal stresses generated by the flow is in general 
small, as can be seen by examining ( 2 . 3 d ) ,  and thus the free-boundary location may 
be obtained as a perturbation about the rest state of capillary statics. I n  this context, 
this takes the form of treating the distinguished limit C = cA3 as A+O; for a further 
discussion see SD. 

The primary coupling between the fields arises from the tangential stress balance 
(2 .3e) .  The relative magnitude of the stress due to temperature and surfactant is given 
by the parameter E.  E may be interpreted as the ratio of the change in interfacial 
tension due to the addition of a uniform surfactant concentration of co to that  due 
to the imposition of a temperature difference AT. However, since in our problem the 
only applied gradient is that  of temperature, i t  is more compelling to interpret E as 
the ratio of the compositional elasticity c,(acr/ac), to the change in tension 
A a  = AT(i3a/i3T)To. As we shall see, this compositional elasticity will oppose the 
motion due to the thermocapillary stress, as a result of concentration gradients 
produced by convection of the surfactant in the thermocapillary flow field. 

Values of the compositional elasticity co(aa /ac )s  can vary from zero to quite large 
numbers, e.g. 1 N/m for hexonic acid solutions (Pierson & Whitaker 1978). Values 
for yT usually are small, N/mK for a silicone oil. Thus E can vary from a very 
small to a quite large number, strongly depending on the mean concentration c,, and 
the temperature difference AT.  

The value of Pe depends upon both fluid properties and the geometry of the box. 
If we consider a fluid with typical data, taking the surface diffusion coefficient to have 
the same order of magnitude as bulk diffusivities, 

yT = 1 x 10-4N/mK, D = 1 x m/s2, ,u = 1 x kg/m s, 

we obtain 
Y T  ATd Pe = ~ = 1 x 103AT[K]d[m]. 

dP 

Thus for AT = 1 K,  d = 1 cm we would get Pe = lo6. We can conclude that Pe can 
vary from arbitrarily small values (corresponding to  small AT) to quite large values. 

The problem is thus to solve the field equations subject to the boundary conditions 
and the following integral constraints, 

( 2 . 4 ~ )  

(2 .4b)  

expressing conservation of total liquid volume and total surfactant respectively. 

3. The shallow cavity with no surfactant 
Sen & Davis (1982) have analysed the problem of thermocapillary convection with 

no surfactant, which corresponds to  the problem posed in $ 2  with c = 0. Because our 
analysis follows closely from theirs, we briefly highlight the features of the solution 
technique. The interest is in analytical descriptions of these flows which may be 
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obtained for shallow slots A+O. I n  this case, the lubrication equations apply in the 
central regions of the cavity. Furthermore, i t  is desirable to  perturb about the case 
of an initially flat interface, which may be obtained by neglecting the normal stress 
due to the flow and either fixing the contact line, or choosing the contact angle close 
to in. This corresponds to the case C < A2,  cf. (2 .3d) .  I n  order to obtain the first 
corrections to the case of a flat interface a t  lowest order in an asymptotic expansion 
in A ,  the distinguished limit C = c A 3  is taken. Thus, in the central regions of the 
cavity, SD found that 

h = 1 + Ah,(x) + A2h,(x),  

i P = POW + AP,@, y) + . . . , 
u = u,(y) + Au,(x, y) + . . . , 
T =  T , ( z ) + A T , ( x , y ) +  .... 

It is further found that the temperature field is conductive to lowest order. The 
parallel flow uo(y)  and its associated pressure field are then determined as solutions 
to  the lubrication equations with a constant thermocapillary stress applied a t  the 
interface y = 1. These fields are not uniformly valid, as they do not satisfy the 
conditions a t  the vertical boundaries of the cavity. It is necessary to analyse the 
problem in boundary layers within O(A)  of the ends of the cavity in which the flow 
turns to return fluid to the interior, and where local adjustments to  temperature and 
pressure fields and to interfacial position may also be present. 

The stress associat,ed with po(x)  is then known in the central regions and the 
corresponding deflection h,(z) may be determined. Taking the additional distinguished 
limits 

R = RA,  M = E A  (3.2)  

allowed SD to analyse the problem in a conduction-dominated situation, so that 
interfacial deflections due to  a constant thermocapillary stress could be analytically 
described to the relatively high order of O(A2) .  The results which are relevant here 
are for the case of fixed contact line, for which 

h = l - -  :AC(x) (X"; )+O(A~) ,  (3 .3a)  

u = ~(3y2-22y)+&At'%(x2-~)y2+O(A2). (3.3b) 

These expressions are subject to boundary-layer corrections within O(A)  of x = & i 
which are given in detail by SD. Note that in the core the deflections from the flat 
interface are negative in the left half and positive in the right half of the cavity. To 
leading order, the fluid surface velocity is constant with a value of i, and the 
corrections indicate that the fluid is slightly accelerated and decelerated out of phase 
with the surface deflections. 

We shall be interested in the effects of surfactants on this behaviour. 

4. Lubrication theory for the contaminated interface 
We wish to treat shallow cavities in the limit A+O, C = c A 3 ,  Pe, E - arbitrary. 

We anticipate the following behaviour : since the thermocapillary stress results in a 
nearly uniform surface velocity, there will be convection of surfactant from the left 
(hot) boundary to the right (cold) boundary. This convection will be resisted by 
surface diffusion, the dimensionless strength of the convection relative to diffusion 
being given by Pe. This will cause a positive concentration gradient to develop which, 



450 G. M .  Homsy a d  E.  Meiburg 

through (2.1), will cause a stress opposite to the thermocapillary stress to develop, 
thus retarding the motion near the right (cold) boundary. The strength of this 
opposing stress due to compositional elasticity relative to the thermocapillary stress 
is simply the elasticity number E. Thus one can foresee strong coupling between t.he 
surfactant distribution and the motion if either Pe or E is large, and weak coupling 
if they are small. We seek an analytical description of this coupling. 

We begin with the field equations in the central portions of the cavity, which we 
shall call the core region. We assume the expansions 

u = uo+Aul+ ..., 

w = w0+Av1+ ..., 

h = ho+Ahl+ ... . 
At lowest order we have 

uoz+~o, = 07 uoyy = Poz, (4.2a, b) 

Po, = 0, To,, = 0. (4.2c, d) 

These are to be solved subject to  the conditions 

uo = wo = To, = 0 (y = O),  (4.3a) 

h o ( + i )  = 1 .  (4.3f 1 
Equation (4.3 f )  cannot be justified without a detailed analysis of the boundary-layer 
regime : see SD and Appendix B. 

It is advantageous to  treat the surface-continuity equation in some generality. 
Accurate to O ( A ) ,  i t  becomes 

d2c d 
- = Pe-(u,c), 
dx dx 

( 4 . 4 ~ )  

where we have written 
includes boundary-layer 

the surface velocity as us(x) = u(y  = h(x), 5). Thus us(x) 
corrections to the core flow. The conditions on ( 4 . 3 ~ )  are 

dc 
- = 0 
dx (x: = **), 

and thus the general solution is 

(4.4b) 

(4.4c) 

(4.5a) 

k-l = [: exp (Pe  ri us(t) dt) dz, (4.5b) 

where we have used the fact that  the contact lines are stagnation points, and thus 
us( &+) = 0. It is clear that the boundary-layer corrections to us(x) cannot affect the 
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value of k ,  being exponentially small, and so an approximation to c(x) in  the core, 
accurate to O(A) ,  is 

( 4 . 6 ~ )  

(4 .6b)  

( 4 . 6 ~ )  

This solution is not uniformly valid and must be corrected in the end boundary layers, 
which are discussed in Appendix B. It is clear from this solution and the above 
discussion that the concentration profile may develop a boundary layer of thickness 
O ( l / P e )  near the right-hand boundary as the PBclet number gets large. Thus the 
approximate equations (4 .5)  will be valid only when this concentration boundary 
layer, if it  exists, lies outside the flow boundary layer: otherwise the true surface 
velocity us(z) and the exact solution (4 .4)  must be used. Thus we are formally limited 
in this analysis to  Pe = o ( l / A ) .  We shall see below that this restriction does not 
always hold. 

The solution of equations (4 .2a-d)  subject to (4.3a-c,  e )  may be easily found as 

h, = 1, T,  =-x, (4 .7a ,  b)  

u, = a ( x )  [ 3 y 2 - 2 y ] ,  Po, = 6 a ( z ) .  (4.7c,  d )  

The equation for the unknown surface speed a ( x )  is obtained by combining the 
tangential stress balance ( 4 . 3 4  with (4 .7a ,  b)  and (4 .6a) .  It reads 

a(.) [ 1 + f R P e k , [ a ( x ) ] e ~ p { P e [ ~ u ( t ) d t } ]  = t .  

We have indicated that the constant k is a functional of a ( x ) ,  viz 

(4 .8a)  

(4 .8b)  

The solution of (4 .8)  is formidable, but if obtained may be used to  determine the 
first-order correction to the surface deflection in a manner analogous to SD. We 
consider the O ( A )  equations; in particular, from (2 .3d)  we have 

h,,, = -G-p,(x). (4 .9)  

Combining (4 .9)  with (4 .7d)  we find 

h, = O[ - 6 r* a(x,)  ds, dx, dz, + K ,  x2 + K, z+ K J .  (4.10) 

From a consideration of the boundary layers (see Appendix B) we find that h,(z )  must 
satisfy 

h , ( f $ )  = 0, (4.11) 

Lih , (x)  dx = 0. (4.12) 

These conditions in t,urn determine the constants K,, K ,  and K3 in (4 .10) ,  as discussed 
by SD. 



452 G. M. Homsy and E. Meiburg 

5. Solution 

asymptotic solutions. 
The analytical solution to (4.8) is complicated, so we seek both numerical and 

5.1. Small Pe'clet number 

For small PBclet number, we expect the surface concentration to be nearly uniform. 
The solution for the surface speed may be expanded for small P e  as 

a(x )  = ao(x)  + Pea,(x) + Pe2a2(x) + . . . . (5.1) 

Straightforward analysis of (4.8) then gives 

a(x)  = f -&PeE+&Pe2E(E-x)+O(Pe3) .  

Note that, at leading order, we recover the result of SD for uniform concentration, 
namely a(.) = i. The first-order effects of surface convection are to decrease the 
surface speed uniformly by the factor 1 - iPe E. The reason for this behaviour is clear, 
as weak surface convection will produce a core concentration profile linear in x, with 
a corresponding constant compositional stress - P e  E which opposes the uniform 
thermocapillary stress. The non-uniform retardation of the surface velocity is given 
a t  O( Pe2)), and indicates a relative increase in speed near x = - and decrease near x = !j, 
in accord with our general expectations discussed above. 

The corresponding surface elevations may be obtained, through O( Pe2) ,  as 

h = 1 + A ~ { f x ( $ - x 2 ) [ i  - fPeE+&Pe2 E2] 

+ & Pe2 E ( 80x2 - 4) ( x 2  -$)} + @ A 2 )  + O( Pe3). (5.3) 

Note that we recover the result of SD, (3.3a), as Pe+O. As P e  increases, the deflection 
is nearly uniformly decreased relative to the uncontaminated case. Since to leading 
order the deflection is due to the pressure gradient associated with a uniform surface 
velocity, and since that velocity is uniformly retarded, this result follows immediately. 
The O(Pe2 E )  terms indicate a slight increase in the deflection near the hot boundary 
and a correspondingly slight decrease in the elevation near the cold boundary, but 
these are secondary effects. 

We set 

5.2. Small elasticity 

a(%) = ao(x)+Ea,(x)+O(E2), 

and obtain in a straightforward but tedious manner 

E Pe2 eiPe 
a(x)  = + 1 -  ] + O(E2). [ 32sinhiPe 

(5.4) 

(5.5) 

In  this case we see the developing boundary-layer character of the concentration 
gradient as P e  increases, with the corresponding non-uniform retardation of the 
surface velocity. 

An equally tedious calculation gives, for the surface displacement, correct to O(E), 

11 (4x2 - 1 )  +$ cothiPe ( 1  - 1229) - 2% 

(5 .6)  

Shown in figure 4 is the O(E) correction to the surface deflection, with P e  as a 
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FIGURE 4. The O(E) correction to the surface velocity with surface 
PBclet number as a parameter. 

parameter. For small Pe, the surface concentration is again nearly uniform, resulting 
in no change from the uncontaminated case. As Pe increases, there is first a 
contribution to the surface displacement which is antisymmetric in x and opposite 
in sign to the SD result, in agreement with the results of the previous sub-section. 
However, as Pe increases further, the surface deflections become markedly nonsym- 
metric and begin to decrease near the hot boundary, indicating the development of 
a concentration boundary layer near the stagnation point a t  the cold boundary. 

5.3.  Numerical solution 
The equations (4.8) were solved numerically where the solution was obtained by 
iterating in the following way : 

1 
ai+l(xj)  = ( i  = 1,2,  ...). 

exp { pe f, a#) df} 
4 + P e E  (5.7) 

2 2 

The domain -f < x < f was divided up into 100 intervals, and all integrals were 
evaluated by the trapezoidal rule. Typical results for E = 1 are given in figure 2 with 
Pe as a parameter. 

We see that for E fixed the average surface velocity decreases with increasing Pe. 
The reason for this may be seen as follows. For small Pe we have a homogeneous 
distribution of the surfactant, so that nothing is changed except that the mean surface 
tension is decreased by the addition of the surfactant. As Pe increases, the 
concentration gradients cause a stress opposite in sign to that due to the temperature 
gradient, causing a retardation of the motion. 
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What is not expected is the behaviour for large Pe, for which the surface velocity 
is nearly uniformly retarded, indicating that the tangential stress is also nearly 
constant. The reason for this may be seen as follows. Assume a fixed 0(1) surface 
velocity : as the PBclet number increases one would expect a boundary layer in surface 
concentration to develop near the (right) stagnation point near the cold wall. For 
E = 0(1),  such a boundary layer, if it  existed, would lead to large compositional 
stresses since concentration gradients would be high. These stresses would oppose and 
overwhelm the thermocapillary stress driving the motion. If this were to occur, it 
would in turn lead to a flow reversal and a destruction of the concentration boundary 
layer, leading to a contradiction. Thus the assumption that us(%) = 0(1) as PBclet 
number becomes large is incorrect, and the correct behaviour is a nearly uniform 
retardation of the surface speed with increasing Pe. 

Detailed calculations of the interfacial deflection may be made, since the surface 
speed is known. These were not undertaken, since the smooth variation of us(x) for 
E = O( 1) implies that the surface deflection will be very nearly that given by (3.3a), 
but with a diminished magnitude, representing the decrease of the pressure gradient 
relative to the uncontaminated case. 

5.4. High Pe'clet number, E = 0(1) 

The numerical results of $5.3  indicate that as Pe increases the surface velocity is 
smoothly retarded and as a result no concentration boundary layers are formed. It 
is possible to obtain an analytical solution to (4.8) valid asymptotically as P e + w  
as follows. 

We begin with the observation that there are no concentration boundary layers. 
From the solution (4.6) for C J X )  this in turn implies that  

where d(x) is an 0(1) function to be determined. Inserting (5.8) into (4.8) and taking 
the limit as Pe+ 00, we find that d ( x )  must satisfy 

It is possible to solve (5.9) by first differentiating with respect to x and using (5.9) 
to obtain 

and thus 

(5.11) 

The constant of integration P may be obtained by requiring that (5.1 1) satisfy (5.9); 

P = E ,  (5.12a) 
we find 

(5.126) A 1  u=-  
x + E '  

and thus 
1 

= Pe (x+ E )  
as Pe+ 00. (5.13) 
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FIGURE 5. The surface velocity as a function of PBclet number for E = 1 : -, numerical solution; 
..._ , asymptotic solution for Pe % 1 ; (5.13). The two results for Pe = 1 0 0  are indistinguishable. 

This relation is also plotted in figure 5 as dashed curves with E = 1 ,  and, as can be 
seen, provides an excellent representation of the solution for Pe > 100. This solution 
appears to be valid for E > t ,  thus avoiding the existence of a singularity of (5.13) 
on - ! j<x<! j .  

6. Summary and discussion 
We have analysed the effect of insoluble surfactants on the thermocapillary flow 

in a shallow cavity. We find that, in addition to the parameters that  govern the 
uncontaminated case, two additional parameters characterize the solution. These are 
the elasticity number E and the surface PBclet number Pe. Using lubrication theory 
for shallow cavities, and analysing the turning-flow regions by matched asymptotic 
expansions, i t  is possible to pivot a solution about the limiting case of conduction- 
dominated fields and a flat interface, and to derive a single integral-algebraic 
equation governing the variables in the interior of the cavity, (4.8). We than solve 
(4.8) by perturbation theory for small E ,  small Pe, numerically for arbitrary ( E ,  Pe), 
and asymptotically for large l’e. 

The main results of analysis are as follows: for small elasticity, the surface velocity 
is nearly constant, with the result that ,  for small Pe (large surface diffusion), the 
surface concentration is nearly uniform while, for large Pe, i t  develops a boundary 
layer near the stagnation point at the cold wall, resulting in high local surface 
concentrations, possibly leading to a surface phase change, monolayer collapse, 
and/or resolubilization of the surface species. While these latter effects have little 
effect on the main flow, since they are small, of order E ,  they may have profound 
effects a t  the liquid-solid interface, or the three-phase line. For example, in the case 
of crystal growth, all surface impurities would be convectively swept to the freezing 
boundary, and, if resolubilization were to occur, would be incorporated into the bulk 
and perhaps the solid crystal. The condition for the formation of such concentration 
boundary layers is small elasticity and large PBclet number. In terms of the dynamics, 
these conditions imply that the surface species have little effect on the flow, and as 
nearly non-diffusing species are passively convected in a unidirectional flow field. 
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In  the opposite extreme, that  of small Pe, E = O ( l ) ,  we find that the surface 
concentration is nearly uniform, and that the small uniform gradient produces a 
uniform reduction in surface velocity and interfacial displacement. This behaviour 
persists as Pe increases, with a rapid decrease in the magnitude of the surface velocity. 

Finally in the limit of large Pe, we show that U ,  - ( l / P e )  ( x +  E )  as P+m, with 
the somewhat surprising result that, the less mobile a surface species, the larger is 
its effect on the surface speed. It is of interest to  examine the dimensional form of 
our limiting results. These are 

Thus we find vastly different dependences of the strength of the convection on 
physical parameters in these limits. 

Finally we make a comparison between the present problem and the other general 
class of problems discussed in § 1 .  The main difference relates to the formation of 
concentration boundary layers. I n  the present problem, the flow is generated by the 
relationship between the temperature and concentration gradients and the stress they 
produce. Thus these fields are tightly coupled and, as we have seen, any tendency 
to form sharp gradients in surface concentration results in a large compositional stress 
which always acts to oppose the motion driven by the temperature gradient, leading 
to a nearly uniform retardation of the flow strength and not to the formation of 
concentration boundary layers, condensed or collapsed surface phases, or resolubili- 
zation. On the other hand, the class of problems treated heretofore are ones in which 
the convective velocity is externally imposed, and, although the coupling between 
fields certainly exists, it  is not strong enough to eliminate the production of clean 
surface and thus surfactant boundary layers. This broad distinction would seem to 
apply to similar problems in different geometries as well. 
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Appendix A. Derivation of surface continuity equation 
As a starting point, we define the unit normal and tangent to the surface y = h(x) : 

It = (-Ah,,  l ) / N ,  

t = (1 3 Ah,) /N,  

N = (1 + A2hi) i .  

(A l a )  

(A l h )  

(A 1c) 

Now the dimensionless surface continuity equation is 

d(u*tc) - d2c 
P e p - -  

ds ds2’ 
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where c = c'/c,,, u = (u, Av), and s is the arclength, made dimensionless with respect 
to 1. Using the facts that  

ds = N dx, (A 2 )  

u+A2h,w 
N '  

U ' t  = 

v = h,u, (A 4) 

we have 

dx 

which in expanded form may be written 

which is (2 .39 ) .  

Appendix B. The boundary layers 
We wish to discuss the solutions near x = f + necessary to render the core solutions 

compatible with the endwall boundary conditions, to verify that for a fixed contact 
line the conditions 

h(++) = 0, (B 1) 

h(x)  dz = 1 (B 2 )  

may be applied to the core solutions, and to show that (4.6) is a uniformly valid 
approximation to c(x). 

The starting point' is the full set of equations, written in terms of a stream function, 



458 G. M. Homsy and E.  Meiburg 

Now consider the boundary layer near x = -$. It is appropriate to define a 
boundary-layer coordinate ( = (x++)/A,  and to assume the expansions 

(B 13) I J ( &  Y) = JOG, Y) + AJ&> Y) f * * .  

8 = T+ATl+ ..., E =  E o + l  + ..., 
P = Po+APl+ ..., K = Ko+AK,+ ..., B = No+ .... 

To lowest order we have 

V28 = 0, (B 15) - 
$06 = $0, = To, = 0 

J o g =  $Joy = (To+*) = no-1 = Eo5 = 0 

(Y = 01, (B 16) 

(B 17) 
- 

(( = O ) ,  

(Y = ho(x)) 
(B 18, B 19, B 20) 

(B 21, B 22) 

Solutions to these equations must match with core solutions; this matching require- 
ment eliminates (to this order) terms linear in (. Thus we have 

i KO& = 0, no, !Fo,+~o<+E~oog = 0, $05+hoJOy = 0, 

~ - l ( ~ b y - K o ~ ~ 5 ) + L ( ~ - * )  = 0, E,, = 0. 

(B 23) I To = +;, 

EoO(E) = p,  

KO = 1 .  

As shown by SD, i t  is necessary to  compute pl in order to complete the boundary 
condition for J,. I n  the distinguished limit treated by them, i.e. M = Z A ,  R = RA, 
the final condition is found to be 

J o y ,  = 1. (B 24) 

Thus (B 14), subject to (B 16a, b, B 17a, b ,  B 20, B 24), and matching conditions are 
sufficient to determine Go. 

We shall need the normal-stress condition to O ( A ) ,  which reads 

with solution 
K, = iiy. (B 25c) 

The concentration and deflections must be matched to the core solutions. We find 
simply that 

lim E(()  = 2‘ = lim co(z) = co( -+). (B 26) 
5- m 5 +-a 

Similar considerations hold for the opposite boundary layer near x = 4. The boundary 
layer in F a t  higher order in A then allows the satisfaction of the true boundary 
condition (B 7 b ) .  Thus the concentration differs from co(x) by an O ( A )  quantity only 
within the boundary layers, justifying the use of the solution of $4, (4.6), as a 
uniformly valid solution for c(z) (but not the flux cz). 

For the deflections, we find to  O(A)  

lim 1 + AR1( = lim (h, + Ahl ( z )  + . . .), 
5- 00 5- 
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where the limits are interpreted in terms of matching 

lim (h ,+Ah,(x) )+O(A2)  z h , + A h , ( - + ) + A h ~ ( - & )  (x+:) 
z+-l 

% h , + A h , ( - g ) + h p  2)  [A2 

= h,+Ah,(-g)+O(A2).  

Matching terms in (B 27) gives 

h, = 1 ,  h l ( - + )  = 0, R' = 0. 

h(+) = 0 

Thus the outer solution satisfies the boundary condition 

a t  least to  O(A2) .  
Similar considerations hold for the boundary layer near x = a. 
Thus we have shown that the conditions 
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may be applied to O(A2)  to the core solutions. 
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